openssl/
bn.rs

1//! BigNum implementation
2//!
3//! Large numbers are important for a cryptographic library.  OpenSSL implementation
4//! of BigNum uses dynamically assigned memory to store an array of bit chunks.  This
5//! allows numbers of any size to be compared and mathematical functions performed.
6//!
7//! OpenSSL wiki describes the [`BIGNUM`] data structure.
8//!
9//! # Examples
10//!
11//! ```
12//! use openssl::bn::BigNum;
13//! use openssl::error::ErrorStack;
14//!
15//! fn main() -> Result<(), ErrorStack> {
16//!   let a = BigNum::new()?; // a = 0
17//!   let b = BigNum::from_dec_str("1234567890123456789012345")?;
18//!   let c = &a * &b;
19//!   assert_eq!(a, c);
20//!   Ok(())
21//! }
22//! ```
23//!
24//! [`BIGNUM`]: https://wiki.openssl.org/index.php/Manual:Bn_internal(3)
25use cfg_if::cfg_if;
26use foreign_types::{ForeignType, ForeignTypeRef};
27use libc::c_int;
28use std::cmp::Ordering;
29use std::ffi::CString;
30use std::ops::{Add, Deref, Div, Mul, Neg, Rem, Shl, Shr, Sub};
31use std::{fmt, ptr};
32
33use crate::asn1::Asn1Integer;
34use crate::error::ErrorStack;
35use crate::string::OpensslString;
36use crate::{cvt, cvt_n, cvt_p, LenType};
37use openssl_macros::corresponds;
38
39cfg_if! {
40    if #[cfg(any(ossl110, libressl350))] {
41        use ffi::{
42            BN_get_rfc2409_prime_1024, BN_get_rfc2409_prime_768, BN_get_rfc3526_prime_1536,
43            BN_get_rfc3526_prime_2048, BN_get_rfc3526_prime_3072, BN_get_rfc3526_prime_4096,
44            BN_get_rfc3526_prime_6144, BN_get_rfc3526_prime_8192, BN_is_negative,
45        };
46    } else if #[cfg(boringssl)] {
47        use ffi::BN_is_negative;
48    } else {
49        use ffi::{
50            get_rfc2409_prime_1024 as BN_get_rfc2409_prime_1024,
51            get_rfc2409_prime_768 as BN_get_rfc2409_prime_768,
52            get_rfc3526_prime_1536 as BN_get_rfc3526_prime_1536,
53            get_rfc3526_prime_2048 as BN_get_rfc3526_prime_2048,
54            get_rfc3526_prime_3072 as BN_get_rfc3526_prime_3072,
55            get_rfc3526_prime_4096 as BN_get_rfc3526_prime_4096,
56            get_rfc3526_prime_6144 as BN_get_rfc3526_prime_6144,
57            get_rfc3526_prime_8192 as BN_get_rfc3526_prime_8192,
58        };
59
60        #[allow(bad_style)]
61        unsafe fn BN_is_negative(bn: *const ffi::BIGNUM) -> c_int {
62            (*bn).neg
63        }
64    }
65}
66
67/// Options for the most significant bits of a randomly generated `BigNum`.
68pub struct MsbOption(c_int);
69
70impl MsbOption {
71    /// The most significant bit of the number may be 0.
72    pub const MAYBE_ZERO: MsbOption = MsbOption(-1);
73
74    /// The most significant bit of the number must be 1.
75    pub const ONE: MsbOption = MsbOption(0);
76
77    /// The most significant two bits of the number must be 1.
78    ///
79    /// The number of bits in the product of two such numbers will always be exactly twice the
80    /// number of bits in the original numbers.
81    pub const TWO_ONES: MsbOption = MsbOption(1);
82}
83
84foreign_type_and_impl_send_sync! {
85    type CType = ffi::BN_CTX;
86    fn drop = ffi::BN_CTX_free;
87
88    /// Temporary storage for BigNums on the secure heap
89    ///
90    /// BigNum values are stored dynamically and therefore can be expensive
91    /// to allocate.  BigNumContext and the OpenSSL [`BN_CTX`] structure are used
92    /// internally when passing BigNum values between subroutines.
93    ///
94    /// [`BN_CTX`]: https://www.openssl.org/docs/manmaster/crypto/BN_CTX_new.html
95    pub struct BigNumContext;
96    /// Reference to [`BigNumContext`]
97    ///
98    /// [`BigNumContext`]: struct.BigNumContext.html
99    pub struct BigNumContextRef;
100}
101
102impl BigNumContext {
103    /// Returns a new `BigNumContext`.
104    #[corresponds(BN_CTX_new)]
105    pub fn new() -> Result<BigNumContext, ErrorStack> {
106        unsafe {
107            ffi::init();
108            cvt_p(ffi::BN_CTX_new()).map(BigNumContext)
109        }
110    }
111
112    /// Returns a new secure `BigNumContext`.
113    #[corresponds(BN_CTX_secure_new)]
114    #[cfg(ossl110)]
115    pub fn new_secure() -> Result<BigNumContext, ErrorStack> {
116        unsafe {
117            ffi::init();
118            cvt_p(ffi::BN_CTX_secure_new()).map(BigNumContext)
119        }
120    }
121}
122
123foreign_type_and_impl_send_sync! {
124    type CType = ffi::BIGNUM;
125    fn drop = ffi::BN_free;
126
127    /// Dynamically sized large number implementation
128    ///
129    /// Perform large number mathematics.  Create a new BigNum
130    /// with [`new`].  Perform standard mathematics on large numbers using
131    /// methods from [`Dref<Target = BigNumRef>`]
132    ///
133    /// OpenSSL documentation at [`BN_new`].
134    ///
135    /// [`new`]: struct.BigNum.html#method.new
136    /// [`Dref<Target = BigNumRef>`]: struct.BigNum.html#deref-methods
137    /// [`BN_new`]: https://www.openssl.org/docs/manmaster/crypto/BN_new.html
138    ///
139    /// # Examples
140    /// ```
141    /// use openssl::bn::BigNum;
142    /// # use openssl::error::ErrorStack;
143    /// # fn bignums() -> Result< (), ErrorStack > {
144    /// let little_big = BigNum::from_u32(std::u32::MAX)?;
145    /// assert_eq!(*&little_big.num_bytes(), 4);
146    /// # Ok(())
147    /// # }
148    /// # fn main () { bignums(); }
149    /// ```
150    pub struct BigNum;
151    /// Reference to a [`BigNum`]
152    ///
153    /// [`BigNum`]: struct.BigNum.html
154    pub struct BigNumRef;
155}
156
157impl BigNumRef {
158    /// Erases the memory used by this `BigNum`, resetting its value to 0.
159    ///
160    /// This can be used to destroy sensitive data such as keys when they are no longer needed.
161    #[corresponds(BN_clear)]
162    pub fn clear(&mut self) {
163        unsafe { ffi::BN_clear(self.as_ptr()) }
164    }
165
166    /// Adds a `u32` to `self`.
167    #[corresponds(BN_add_word)]
168    pub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack> {
169        unsafe { cvt(ffi::BN_add_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) }
170    }
171
172    /// Subtracts a `u32` from `self`.
173    #[corresponds(BN_sub_word)]
174    pub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack> {
175        unsafe { cvt(ffi::BN_sub_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) }
176    }
177
178    /// Multiplies a `u32` by `self`.
179    #[corresponds(BN_mul_word)]
180    pub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack> {
181        unsafe { cvt(ffi::BN_mul_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) }
182    }
183
184    /// Divides `self` by a `u32`, returning the remainder.
185    #[corresponds(BN_div_word)]
186    #[allow(clippy::useless_conversion)]
187    pub fn div_word(&mut self, w: u32) -> Result<u64, ErrorStack> {
188        unsafe {
189            let r = ffi::BN_div_word(self.as_ptr(), w.into());
190            if r == ffi::BN_ULONG::MAX {
191                Err(ErrorStack::get())
192            } else {
193                Ok(r.into())
194            }
195        }
196    }
197
198    /// Returns the result of `self` modulo `w`.
199    #[corresponds(BN_mod_word)]
200    #[allow(clippy::useless_conversion)]
201    pub fn mod_word(&self, w: u32) -> Result<u64, ErrorStack> {
202        unsafe {
203            let r = ffi::BN_mod_word(self.as_ptr(), w.into());
204            if r == ffi::BN_ULONG::MAX {
205                Err(ErrorStack::get())
206            } else {
207                Ok(r.into())
208            }
209        }
210    }
211
212    /// Places a cryptographically-secure pseudo-random nonnegative
213    /// number less than `self` in `rnd`.
214    #[corresponds(BN_rand_range)]
215    pub fn rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> {
216        unsafe { cvt(ffi::BN_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) }
217    }
218
219    /// The cryptographically weak counterpart to `rand_in_range`.
220    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
221    #[corresponds(BN_pseudo_rand_range)]
222    pub fn pseudo_rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> {
223        unsafe { cvt(ffi::BN_pseudo_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) }
224    }
225
226    /// Sets bit `n`. Equivalent to `self |= (1 << n)`.
227    ///
228    /// When setting a bit outside of `self`, it is expanded.
229    #[corresponds(BN_set_bit)]
230    #[allow(clippy::useless_conversion)]
231    pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack> {
232        unsafe { cvt(ffi::BN_set_bit(self.as_ptr(), n.into())).map(|_| ()) }
233    }
234
235    /// Clears bit `n`, setting it to 0. Equivalent to `self &= ~(1 << n)`.
236    ///
237    /// When clearing a bit outside of `self`, an error is returned.
238    #[corresponds(BN_clear_bit)]
239    #[allow(clippy::useless_conversion)]
240    pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack> {
241        unsafe { cvt(ffi::BN_clear_bit(self.as_ptr(), n.into())).map(|_| ()) }
242    }
243
244    /// Returns `true` if the `n`th bit of `self` is set to 1, `false` otherwise.
245    #[corresponds(BN_is_bit_set)]
246    #[allow(clippy::useless_conversion)]
247    pub fn is_bit_set(&self, n: i32) -> bool {
248        unsafe { ffi::BN_is_bit_set(self.as_ptr(), n.into()) == 1 }
249    }
250
251    /// Truncates `self` to the lowest `n` bits.
252    ///
253    /// An error occurs if `self` is already shorter than `n` bits.
254    #[corresponds(BN_mask_bits)]
255    #[allow(clippy::useless_conversion)]
256    pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack> {
257        unsafe { cvt(ffi::BN_mask_bits(self.as_ptr(), n.into())).map(|_| ()) }
258    }
259
260    /// Places `a << 1` in `self`.  Equivalent to `self * 2`.
261    #[corresponds(BN_lshift1)]
262    pub fn lshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> {
263        unsafe { cvt(ffi::BN_lshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) }
264    }
265
266    /// Places `a >> 1` in `self`. Equivalent to `self / 2`.
267    #[corresponds(BN_rshift1)]
268    pub fn rshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> {
269        unsafe { cvt(ffi::BN_rshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) }
270    }
271
272    /// Places `a + b` in `self`.  [`core::ops::Add`] is also implemented for `BigNumRef`.
273    ///
274    /// [`core::ops::Add`]: struct.BigNumRef.html#method.add
275    #[corresponds(BN_add)]
276    pub fn checked_add(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> {
277        unsafe { cvt(ffi::BN_add(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) }
278    }
279
280    /// Places `a - b` in `self`. [`core::ops::Sub`] is also implemented for `BigNumRef`.
281    ///
282    /// [`core::ops::Sub`]: struct.BigNumRef.html#method.sub
283    #[corresponds(BN_sub)]
284    pub fn checked_sub(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> {
285        unsafe { cvt(ffi::BN_sub(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) }
286    }
287
288    /// Places `a << n` in `self`.  Equivalent to `a * 2 ^ n`.
289    #[corresponds(BN_lshift)]
290    #[allow(clippy::useless_conversion)]
291    pub fn lshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> {
292        unsafe { cvt(ffi::BN_lshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) }
293    }
294
295    /// Places `a >> n` in `self`. Equivalent to `a / 2 ^ n`.
296    #[corresponds(BN_rshift)]
297    #[allow(clippy::useless_conversion)]
298    pub fn rshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> {
299        unsafe { cvt(ffi::BN_rshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) }
300    }
301
302    /// Creates a new BigNum with the same value.
303    #[corresponds(BN_dup)]
304    pub fn to_owned(&self) -> Result<BigNum, ErrorStack> {
305        unsafe { cvt_p(ffi::BN_dup(self.as_ptr())).map(|b| BigNum::from_ptr(b)) }
306    }
307
308    /// Sets the sign of `self`.  Pass true to set `self` to a negative.  False sets
309    /// `self` positive.
310    #[corresponds(BN_set_negative)]
311    pub fn set_negative(&mut self, negative: bool) {
312        unsafe { ffi::BN_set_negative(self.as_ptr(), negative as c_int) }
313    }
314
315    /// Compare the absolute values of `self` and `oth`.
316    ///
317    /// # Examples
318    ///
319    /// ```
320    /// # use openssl::bn::BigNum;
321    /// # use std::cmp::Ordering;
322    /// let s = -BigNum::from_u32(8).unwrap();
323    /// let o = BigNum::from_u32(8).unwrap();
324    ///
325    /// assert_eq!(s.ucmp(&o), Ordering::Equal);
326    /// ```
327    #[corresponds(BN_ucmp)]
328    pub fn ucmp(&self, oth: &BigNumRef) -> Ordering {
329        unsafe { ffi::BN_ucmp(self.as_ptr(), oth.as_ptr()).cmp(&0) }
330    }
331
332    /// Returns `true` if `self` is negative.
333    #[corresponds(BN_is_negative)]
334    pub fn is_negative(&self) -> bool {
335        unsafe { BN_is_negative(self.as_ptr()) == 1 }
336    }
337
338    /// Returns `true` is `self` is even.
339    #[corresponds(BN_is_even)]
340    #[cfg(any(ossl110, boringssl, libressl350))]
341    pub fn is_even(&self) -> bool {
342        !self.is_odd()
343    }
344
345    /// Returns `true` is `self` is odd.
346    #[corresponds(BN_is_odd)]
347    #[cfg(any(ossl110, boringssl, libressl350))]
348    pub fn is_odd(&self) -> bool {
349        unsafe { ffi::BN_is_odd(self.as_ptr()) == 1 }
350    }
351
352    /// Returns the number of significant bits in `self`.
353    #[corresponds(BN_num_bits)]
354    #[allow(clippy::unnecessary_cast)]
355    pub fn num_bits(&self) -> i32 {
356        unsafe { ffi::BN_num_bits(self.as_ptr()) as i32 }
357    }
358
359    /// Returns the size of `self` in bytes. Implemented natively.
360    pub fn num_bytes(&self) -> i32 {
361        (self.num_bits() + 7) / 8
362    }
363
364    /// Generates a cryptographically strong pseudo-random `BigNum`, placing it in `self`.
365    ///
366    /// # Parameters
367    ///
368    /// * `bits`: Length of the number in bits.
369    /// * `msb`: The desired properties of the most significant bit. See [`constants`].
370    /// * `odd`: If `true`, the generated number will be odd.
371    ///
372    /// # Examples
373    ///
374    /// ```
375    /// use openssl::bn::{BigNum, MsbOption};
376    /// use openssl::error::ErrorStack;
377    ///
378    /// fn generate_random() -> Result< BigNum, ErrorStack > {
379    ///    let mut big = BigNum::new()?;
380    ///
381    ///    // Generates a 128-bit odd random number
382    ///    big.rand(128, MsbOption::MAYBE_ZERO, true);
383    ///    Ok((big))
384    /// }
385    /// ```
386    ///
387    /// [`constants`]: index.html#constants
388    #[corresponds(BN_rand)]
389    #[allow(clippy::useless_conversion)]
390    pub fn rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> {
391        unsafe {
392            cvt(ffi::BN_rand(
393                self.as_ptr(),
394                bits.into(),
395                msb.0,
396                odd as c_int,
397            ))
398            .map(|_| ())
399        }
400    }
401
402    /// The cryptographically weak counterpart to `rand`.  Not suitable for key generation.
403    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
404    #[corresponds(BN_pseudo_rand)]
405    #[allow(clippy::useless_conversion)]
406    pub fn pseudo_rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> {
407        unsafe {
408            cvt(ffi::BN_pseudo_rand(
409                self.as_ptr(),
410                bits.into(),
411                msb.0,
412                odd as c_int,
413            ))
414            .map(|_| ())
415        }
416    }
417
418    /// Generates a prime number, placing it in `self`.
419    ///
420    /// # Parameters
421    ///
422    /// * `bits`: The length of the prime in bits (lower bound).
423    /// * `safe`: If true, returns a "safe" prime `p` so that `(p-1)/2` is also prime.
424    /// * `add`/`rem`: If `add` is set to `Some(add)`, `p % add == rem` will hold, where `p` is the
425    ///   generated prime and `rem` is `1` if not specified (`None`).
426    ///
427    /// # Examples
428    ///
429    /// ```
430    /// use openssl::bn::BigNum;
431    /// use openssl::error::ErrorStack;
432    ///
433    /// fn generate_weak_prime() -> Result< BigNum, ErrorStack > {
434    ///    let mut big = BigNum::new()?;
435    ///
436    ///    // Generates a 128-bit simple prime number
437    ///    big.generate_prime(128, false, None, None);
438    ///    Ok((big))
439    /// }
440    /// ```
441    #[corresponds(BN_generate_prime_ex)]
442    pub fn generate_prime(
443        &mut self,
444        bits: i32,
445        safe: bool,
446        add: Option<&BigNumRef>,
447        rem: Option<&BigNumRef>,
448    ) -> Result<(), ErrorStack> {
449        unsafe {
450            cvt(ffi::BN_generate_prime_ex(
451                self.as_ptr(),
452                bits as c_int,
453                safe as c_int,
454                add.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()),
455                rem.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()),
456                ptr::null_mut(),
457            ))
458            .map(|_| ())
459        }
460    }
461
462    /// Places the result of `a * b` in `self`.
463    /// [`core::ops::Mul`] is also implemented for `BigNumRef`.
464    ///
465    /// [`core::ops::Mul`]: struct.BigNumRef.html#method.mul
466    #[corresponds(BN_mul)]
467    pub fn checked_mul(
468        &mut self,
469        a: &BigNumRef,
470        b: &BigNumRef,
471        ctx: &mut BigNumContextRef,
472    ) -> Result<(), ErrorStack> {
473        unsafe {
474            cvt(ffi::BN_mul(
475                self.as_ptr(),
476                a.as_ptr(),
477                b.as_ptr(),
478                ctx.as_ptr(),
479            ))
480            .map(|_| ())
481        }
482    }
483
484    /// Places the result of `a / b` in `self`. The remainder is discarded.
485    /// [`core::ops::Div`] is also implemented for `BigNumRef`.
486    ///
487    /// [`core::ops::Div`]: struct.BigNumRef.html#method.div
488    #[corresponds(BN_div)]
489    pub fn checked_div(
490        &mut self,
491        a: &BigNumRef,
492        b: &BigNumRef,
493        ctx: &mut BigNumContextRef,
494    ) -> Result<(), ErrorStack> {
495        unsafe {
496            cvt(ffi::BN_div(
497                self.as_ptr(),
498                ptr::null_mut(),
499                a.as_ptr(),
500                b.as_ptr(),
501                ctx.as_ptr(),
502            ))
503            .map(|_| ())
504        }
505    }
506
507    /// Places the result of `a % b` in `self`.
508    #[corresponds(BN_div)]
509    pub fn checked_rem(
510        &mut self,
511        a: &BigNumRef,
512        b: &BigNumRef,
513        ctx: &mut BigNumContextRef,
514    ) -> Result<(), ErrorStack> {
515        unsafe {
516            cvt(ffi::BN_div(
517                ptr::null_mut(),
518                self.as_ptr(),
519                a.as_ptr(),
520                b.as_ptr(),
521                ctx.as_ptr(),
522            ))
523            .map(|_| ())
524        }
525    }
526
527    /// Places the result of `a / b` in `self` and `a % b` in `rem`.
528    #[corresponds(BN_div)]
529    pub fn div_rem(
530        &mut self,
531        rem: &mut BigNumRef,
532        a: &BigNumRef,
533        b: &BigNumRef,
534        ctx: &mut BigNumContextRef,
535    ) -> Result<(), ErrorStack> {
536        unsafe {
537            cvt(ffi::BN_div(
538                self.as_ptr(),
539                rem.as_ptr(),
540                a.as_ptr(),
541                b.as_ptr(),
542                ctx.as_ptr(),
543            ))
544            .map(|_| ())
545        }
546    }
547
548    /// Places the result of `a²` in `self`.
549    #[corresponds(BN_sqr)]
550    pub fn sqr(&mut self, a: &BigNumRef, ctx: &mut BigNumContextRef) -> Result<(), ErrorStack> {
551        unsafe { cvt(ffi::BN_sqr(self.as_ptr(), a.as_ptr(), ctx.as_ptr())).map(|_| ()) }
552    }
553
554    /// Places the result of `a mod m` in `self`.  As opposed to `div_rem`
555    /// the result is non-negative.
556    #[corresponds(BN_nnmod)]
557    pub fn nnmod(
558        &mut self,
559        a: &BigNumRef,
560        m: &BigNumRef,
561        ctx: &mut BigNumContextRef,
562    ) -> Result<(), ErrorStack> {
563        unsafe {
564            cvt(ffi::BN_nnmod(
565                self.as_ptr(),
566                a.as_ptr(),
567                m.as_ptr(),
568                ctx.as_ptr(),
569            ))
570            .map(|_| ())
571        }
572    }
573
574    /// Places the result of `(a + b) mod m` in `self`.
575    #[corresponds(BN_mod_add)]
576    pub fn mod_add(
577        &mut self,
578        a: &BigNumRef,
579        b: &BigNumRef,
580        m: &BigNumRef,
581        ctx: &mut BigNumContextRef,
582    ) -> Result<(), ErrorStack> {
583        unsafe {
584            cvt(ffi::BN_mod_add(
585                self.as_ptr(),
586                a.as_ptr(),
587                b.as_ptr(),
588                m.as_ptr(),
589                ctx.as_ptr(),
590            ))
591            .map(|_| ())
592        }
593    }
594
595    /// Places the result of `(a - b) mod m` in `self`.
596    #[corresponds(BN_mod_sub)]
597    pub fn mod_sub(
598        &mut self,
599        a: &BigNumRef,
600        b: &BigNumRef,
601        m: &BigNumRef,
602        ctx: &mut BigNumContextRef,
603    ) -> Result<(), ErrorStack> {
604        unsafe {
605            cvt(ffi::BN_mod_sub(
606                self.as_ptr(),
607                a.as_ptr(),
608                b.as_ptr(),
609                m.as_ptr(),
610                ctx.as_ptr(),
611            ))
612            .map(|_| ())
613        }
614    }
615
616    /// Places the result of `(a * b) mod m` in `self`.
617    #[corresponds(BN_mod_mul)]
618    pub fn mod_mul(
619        &mut self,
620        a: &BigNumRef,
621        b: &BigNumRef,
622        m: &BigNumRef,
623        ctx: &mut BigNumContextRef,
624    ) -> Result<(), ErrorStack> {
625        unsafe {
626            cvt(ffi::BN_mod_mul(
627                self.as_ptr(),
628                a.as_ptr(),
629                b.as_ptr(),
630                m.as_ptr(),
631                ctx.as_ptr(),
632            ))
633            .map(|_| ())
634        }
635    }
636
637    /// Places the result of `a² mod m` in `self`.
638    #[corresponds(BN_mod_sqr)]
639    pub fn mod_sqr(
640        &mut self,
641        a: &BigNumRef,
642        m: &BigNumRef,
643        ctx: &mut BigNumContextRef,
644    ) -> Result<(), ErrorStack> {
645        unsafe {
646            cvt(ffi::BN_mod_sqr(
647                self.as_ptr(),
648                a.as_ptr(),
649                m.as_ptr(),
650                ctx.as_ptr(),
651            ))
652            .map(|_| ())
653        }
654    }
655
656    /// Places into `self` the modular square root of `a` such that `self^2 = a (mod p)`
657    #[corresponds(BN_mod_sqrt)]
658    pub fn mod_sqrt(
659        &mut self,
660        a: &BigNumRef,
661        p: &BigNumRef,
662        ctx: &mut BigNumContextRef,
663    ) -> Result<(), ErrorStack> {
664        unsafe {
665            cvt_p(ffi::BN_mod_sqrt(
666                self.as_ptr(),
667                a.as_ptr(),
668                p.as_ptr(),
669                ctx.as_ptr(),
670            ))
671            .map(|_| ())
672        }
673    }
674
675    /// Places the result of `a^p` in `self`.
676    #[corresponds(BN_exp)]
677    pub fn exp(
678        &mut self,
679        a: &BigNumRef,
680        p: &BigNumRef,
681        ctx: &mut BigNumContextRef,
682    ) -> Result<(), ErrorStack> {
683        unsafe {
684            cvt(ffi::BN_exp(
685                self.as_ptr(),
686                a.as_ptr(),
687                p.as_ptr(),
688                ctx.as_ptr(),
689            ))
690            .map(|_| ())
691        }
692    }
693
694    /// Places the result of `a^p mod m` in `self`.
695    #[corresponds(BN_mod_exp)]
696    pub fn mod_exp(
697        &mut self,
698        a: &BigNumRef,
699        p: &BigNumRef,
700        m: &BigNumRef,
701        ctx: &mut BigNumContextRef,
702    ) -> Result<(), ErrorStack> {
703        unsafe {
704            cvt(ffi::BN_mod_exp(
705                self.as_ptr(),
706                a.as_ptr(),
707                p.as_ptr(),
708                m.as_ptr(),
709                ctx.as_ptr(),
710            ))
711            .map(|_| ())
712        }
713    }
714
715    /// Places the inverse of `a` modulo `n` in `self`.
716    #[corresponds(BN_mod_inverse)]
717    pub fn mod_inverse(
718        &mut self,
719        a: &BigNumRef,
720        n: &BigNumRef,
721        ctx: &mut BigNumContextRef,
722    ) -> Result<(), ErrorStack> {
723        unsafe {
724            cvt_p(ffi::BN_mod_inverse(
725                self.as_ptr(),
726                a.as_ptr(),
727                n.as_ptr(),
728                ctx.as_ptr(),
729            ))
730            .map(|_| ())
731        }
732    }
733
734    /// Places the greatest common denominator of `a` and `b` in `self`.
735    #[corresponds(BN_gcd)]
736    pub fn gcd(
737        &mut self,
738        a: &BigNumRef,
739        b: &BigNumRef,
740        ctx: &mut BigNumContextRef,
741    ) -> Result<(), ErrorStack> {
742        unsafe {
743            cvt(ffi::BN_gcd(
744                self.as_ptr(),
745                a.as_ptr(),
746                b.as_ptr(),
747                ctx.as_ptr(),
748            ))
749            .map(|_| ())
750        }
751    }
752
753    /// Checks whether `self` is prime.
754    ///
755    /// Performs a Miller-Rabin probabilistic primality test with `checks` iterations.
756    ///
757    /// # Return Value
758    ///
759    /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`.
760    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
761    #[corresponds(BN_is_prime_ex)]
762    #[allow(clippy::useless_conversion)]
763    pub fn is_prime(&self, checks: i32, ctx: &mut BigNumContextRef) -> Result<bool, ErrorStack> {
764        unsafe {
765            cvt_n(ffi::BN_is_prime_ex(
766                self.as_ptr(),
767                checks.into(),
768                ctx.as_ptr(),
769                ptr::null_mut(),
770            ))
771            .map(|r| r != 0)
772        }
773    }
774
775    /// Checks whether `self` is prime with optional trial division.
776    ///
777    /// If `do_trial_division` is `true`, first performs trial division by a number of small primes.
778    /// Then, like `is_prime`, performs a Miller-Rabin probabilistic primality test with `checks`
779    /// iterations.
780    ///
781    /// # Return Value
782    ///
783    /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`.
784    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
785    #[corresponds(BN_is_prime_fasttest_ex)]
786    #[allow(clippy::useless_conversion)]
787    pub fn is_prime_fasttest(
788        &self,
789        checks: i32,
790        ctx: &mut BigNumContextRef,
791        do_trial_division: bool,
792    ) -> Result<bool, ErrorStack> {
793        unsafe {
794            cvt_n(ffi::BN_is_prime_fasttest_ex(
795                self.as_ptr(),
796                checks.into(),
797                ctx.as_ptr(),
798                do_trial_division as c_int,
799                ptr::null_mut(),
800            ))
801            .map(|r| r != 0)
802        }
803    }
804
805    /// Returns a big-endian byte vector representation of the absolute value of `self`.
806    ///
807    /// `self` can be recreated by using `from_slice`.
808    ///
809    /// ```
810    /// # use openssl::bn::BigNum;
811    /// let s = -BigNum::from_u32(4543).unwrap();
812    /// let r = BigNum::from_u32(4543).unwrap();
813    ///
814    /// let s_vec = s.to_vec();
815    /// assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r);
816    /// ```
817    #[corresponds(BN_bn2bin)]
818    pub fn to_vec(&self) -> Vec<u8> {
819        let size = self.num_bytes() as usize;
820        let mut v = Vec::with_capacity(size);
821        unsafe {
822            ffi::BN_bn2bin(self.as_ptr(), v.as_mut_ptr());
823            v.set_len(size);
824        }
825        v
826    }
827
828    /// Returns a big-endian byte vector representation of the absolute value of `self` padded
829    /// to `pad_to` bytes.
830    ///
831    /// If `pad_to` is less than `self.num_bytes()` then an error is returned.
832    ///
833    /// `self` can be recreated by using `from_slice`.
834    ///
835    /// ```
836    /// # use openssl::bn::BigNum;
837    /// let bn = BigNum::from_u32(0x4543).unwrap();
838    ///
839    /// let bn_vec = bn.to_vec_padded(4).unwrap();
840    /// assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]);
841    ///
842    /// let r = bn.to_vec_padded(1);
843    /// assert!(r.is_err());
844    ///
845    /// let bn = -BigNum::from_u32(0x4543).unwrap();
846    /// let bn_vec = bn.to_vec_padded(4).unwrap();
847    /// assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]);
848    /// ```
849    #[corresponds(BN_bn2binpad)]
850    #[cfg(any(ossl110, libressl340, boringssl))]
851    pub fn to_vec_padded(&self, pad_to: i32) -> Result<Vec<u8>, ErrorStack> {
852        let mut v = Vec::with_capacity(pad_to as usize);
853        unsafe {
854            cvt(ffi::BN_bn2binpad(self.as_ptr(), v.as_mut_ptr(), pad_to))?;
855            v.set_len(pad_to as usize);
856        }
857        Ok(v)
858    }
859
860    /// Returns a decimal string representation of `self`.
861    ///
862    /// ```
863    /// # use openssl::bn::BigNum;
864    /// let s = -BigNum::from_u32(12345).unwrap();
865    ///
866    /// assert_eq!(&**s.to_dec_str().unwrap(), "-12345");
867    /// ```
868    #[corresponds(BN_bn2dec)]
869    pub fn to_dec_str(&self) -> Result<OpensslString, ErrorStack> {
870        unsafe {
871            let buf = cvt_p(ffi::BN_bn2dec(self.as_ptr()))?;
872            Ok(OpensslString::from_ptr(buf))
873        }
874    }
875
876    /// Returns a hexadecimal string representation of `self`.
877    ///
878    /// ```
879    /// # use openssl::bn::BigNum;
880    /// let s = -BigNum::from_u32(0x99ff).unwrap();
881    ///
882    /// assert_eq!(s.to_hex_str().unwrap().to_uppercase(), "-99FF");
883    /// ```
884    #[corresponds(BN_bn2hex)]
885    pub fn to_hex_str(&self) -> Result<OpensslString, ErrorStack> {
886        unsafe {
887            let buf = cvt_p(ffi::BN_bn2hex(self.as_ptr()))?;
888            Ok(OpensslString::from_ptr(buf))
889        }
890    }
891
892    /// Returns an `Asn1Integer` containing the value of `self`.
893    #[corresponds(BN_to_ASN1_INTEGER)]
894    pub fn to_asn1_integer(&self) -> Result<Asn1Integer, ErrorStack> {
895        unsafe {
896            cvt_p(ffi::BN_to_ASN1_INTEGER(self.as_ptr(), ptr::null_mut()))
897                .map(|p| Asn1Integer::from_ptr(p))
898        }
899    }
900
901    /// Force constant time computation on this value.
902    #[corresponds(BN_set_flags)]
903    #[cfg(ossl110)]
904    pub fn set_const_time(&mut self) {
905        unsafe { ffi::BN_set_flags(self.as_ptr(), ffi::BN_FLG_CONSTTIME) }
906    }
907
908    /// Returns true if `self` is in const time mode.
909    #[corresponds(BN_get_flags)]
910    #[cfg(ossl110)]
911    pub fn is_const_time(&self) -> bool {
912        unsafe {
913            let ret = ffi::BN_get_flags(self.as_ptr(), ffi::BN_FLG_CONSTTIME);
914            ret == ffi::BN_FLG_CONSTTIME
915        }
916    }
917
918    /// Returns true if `self` was created with [`BigNum::new_secure`].
919    #[corresponds(BN_get_flags)]
920    #[cfg(ossl110)]
921    pub fn is_secure(&self) -> bool {
922        unsafe {
923            let ret = ffi::BN_get_flags(self.as_ptr(), ffi::BN_FLG_SECURE);
924            ret == ffi::BN_FLG_SECURE
925        }
926    }
927}
928
929impl BigNum {
930    /// Creates a new `BigNum` with the value 0.
931    #[corresponds(BN_new)]
932    pub fn new() -> Result<BigNum, ErrorStack> {
933        unsafe {
934            ffi::init();
935            let v = cvt_p(ffi::BN_new())?;
936            Ok(BigNum::from_ptr(v))
937        }
938    }
939
940    /// Returns a new secure `BigNum`.
941    #[corresponds(BN_secure_new)]
942    #[cfg(ossl110)]
943    pub fn new_secure() -> Result<BigNum, ErrorStack> {
944        unsafe {
945            ffi::init();
946            let v = cvt_p(ffi::BN_secure_new())?;
947            Ok(BigNum::from_ptr(v))
948        }
949    }
950
951    /// Creates a new `BigNum` with the given value.
952    #[corresponds(BN_set_word)]
953    pub fn from_u32(n: u32) -> Result<BigNum, ErrorStack> {
954        BigNum::new().and_then(|v| unsafe {
955            cvt(ffi::BN_set_word(v.as_ptr(), n as ffi::BN_ULONG)).map(|_| v)
956        })
957    }
958
959    /// Creates a `BigNum` from a decimal string.
960    #[corresponds(BN_dec2bn)]
961    pub fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack> {
962        unsafe {
963            ffi::init();
964            let c_str = CString::new(s.as_bytes()).unwrap();
965            let mut bn = ptr::null_mut();
966            cvt(ffi::BN_dec2bn(&mut bn, c_str.as_ptr() as *const _))?;
967            Ok(BigNum::from_ptr(bn))
968        }
969    }
970
971    /// Creates a `BigNum` from a hexadecimal string.
972    #[corresponds(BN_hex2bn)]
973    pub fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack> {
974        unsafe {
975            ffi::init();
976            let c_str = CString::new(s.as_bytes()).unwrap();
977            let mut bn = ptr::null_mut();
978            cvt(ffi::BN_hex2bn(&mut bn, c_str.as_ptr() as *const _))?;
979            Ok(BigNum::from_ptr(bn))
980        }
981    }
982
983    /// Returns a constant used in IKE as defined in [`RFC 2409`].  This prime number is in
984    /// the order of magnitude of `2 ^ 768`.  This number is used during calculated key
985    /// exchanges such as Diffie-Hellman.  This number is labeled Oakley group id 1.
986    ///
987    /// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21
988    #[corresponds(BN_get_rfc2409_prime_768)]
989    #[cfg(not(boringssl))]
990    pub fn get_rfc2409_prime_768() -> Result<BigNum, ErrorStack> {
991        unsafe {
992            ffi::init();
993            cvt_p(BN_get_rfc2409_prime_768(ptr::null_mut())).map(BigNum)
994        }
995    }
996
997    /// Returns a constant used in IKE as defined in [`RFC 2409`].  This prime number is in
998    /// the order of magnitude of `2 ^ 1024`.  This number is used during calculated key
999    /// exchanges such as Diffie-Hellman.  This number is labeled Oakly group 2.
1000    ///
1001    /// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21
1002    #[corresponds(BN_get_rfc2409_prime_1024)]
1003    #[cfg(not(boringssl))]
1004    pub fn get_rfc2409_prime_1024() -> Result<BigNum, ErrorStack> {
1005        unsafe {
1006            ffi::init();
1007            cvt_p(BN_get_rfc2409_prime_1024(ptr::null_mut())).map(BigNum)
1008        }
1009    }
1010
1011    /// Returns a constant used in IKE as defined in [`RFC 3526`].  The prime is in the order
1012    /// of magnitude of `2 ^ 1536`.  This number is used during calculated key
1013    /// exchanges such as Diffie-Hellman.  This number is labeled MODP group 5.
1014    ///
1015    /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3
1016    #[corresponds(BN_get_rfc3526_prime_1536)]
1017    #[cfg(not(boringssl))]
1018    pub fn get_rfc3526_prime_1536() -> Result<BigNum, ErrorStack> {
1019        unsafe {
1020            ffi::init();
1021            cvt_p(BN_get_rfc3526_prime_1536(ptr::null_mut())).map(BigNum)
1022        }
1023    }
1024
1025    /// Returns a constant used in IKE as defined in [`RFC 3526`].  The prime is in the order
1026    /// of magnitude of `2 ^ 2048`.  This number is used during calculated key
1027    /// exchanges such as Diffie-Hellman.  This number is labeled MODP group 14.
1028    ///
1029    /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3
1030    #[corresponds(BN_get_rfc3526_prime_2048)]
1031    #[cfg(not(boringssl))]
1032    pub fn get_rfc3526_prime_2048() -> Result<BigNum, ErrorStack> {
1033        unsafe {
1034            ffi::init();
1035            cvt_p(BN_get_rfc3526_prime_2048(ptr::null_mut())).map(BigNum)
1036        }
1037    }
1038
1039    /// Returns a constant used in IKE as defined in [`RFC 3526`].  The prime is in the order
1040    /// of magnitude of `2 ^ 3072`.  This number is used during calculated key
1041    /// exchanges such as Diffie-Hellman.  This number is labeled MODP group 15.
1042    ///
1043    /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4
1044    #[corresponds(BN_get_rfc3526_prime_3072)]
1045    #[cfg(not(boringssl))]
1046    pub fn get_rfc3526_prime_3072() -> Result<BigNum, ErrorStack> {
1047        unsafe {
1048            ffi::init();
1049            cvt_p(BN_get_rfc3526_prime_3072(ptr::null_mut())).map(BigNum)
1050        }
1051    }
1052
1053    /// Returns a constant used in IKE as defined in [`RFC 3526`].  The prime is in the order
1054    /// of magnitude of `2 ^ 4096`.  This number is used during calculated key
1055    /// exchanges such as Diffie-Hellman.  This number is labeled MODP group 16.
1056    ///
1057    /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4
1058    #[corresponds(BN_get_rfc3526_prime_4096)]
1059    #[cfg(not(boringssl))]
1060    pub fn get_rfc3526_prime_4096() -> Result<BigNum, ErrorStack> {
1061        unsafe {
1062            ffi::init();
1063            cvt_p(BN_get_rfc3526_prime_4096(ptr::null_mut())).map(BigNum)
1064        }
1065    }
1066
1067    /// Returns a constant used in IKE as defined in [`RFC 3526`].  The prime is in the order
1068    /// of magnitude of `2 ^ 6144`.  This number is used during calculated key
1069    /// exchanges such as Diffie-Hellman.  This number is labeled MODP group 17.
1070    ///
1071    /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6
1072    #[corresponds(BN_get_rfc3526_prime_6114)]
1073    #[cfg(not(boringssl))]
1074    pub fn get_rfc3526_prime_6144() -> Result<BigNum, ErrorStack> {
1075        unsafe {
1076            ffi::init();
1077            cvt_p(BN_get_rfc3526_prime_6144(ptr::null_mut())).map(BigNum)
1078        }
1079    }
1080
1081    /// Returns a constant used in IKE as defined in [`RFC 3526`].  The prime is in the order
1082    /// of magnitude of `2 ^ 8192`.  This number is used during calculated key
1083    /// exchanges such as Diffie-Hellman.  This number is labeled MODP group 18.
1084    ///
1085    /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6
1086    #[corresponds(BN_get_rfc3526_prime_8192)]
1087    #[cfg(not(boringssl))]
1088    pub fn get_rfc3526_prime_8192() -> Result<BigNum, ErrorStack> {
1089        unsafe {
1090            ffi::init();
1091            cvt_p(BN_get_rfc3526_prime_8192(ptr::null_mut())).map(BigNum)
1092        }
1093    }
1094
1095    /// Creates a new `BigNum` from an unsigned, big-endian encoded number of arbitrary length.
1096    ///
1097    /// OpenSSL documentation at [`BN_bin2bn`]
1098    ///
1099    /// [`BN_bin2bn`]: https://www.openssl.org/docs/manmaster/crypto/BN_bin2bn.html
1100    ///
1101    /// ```
1102    /// # use openssl::bn::BigNum;
1103    /// let bignum = BigNum::from_slice(&[0x12, 0x00, 0x34]).unwrap();
1104    ///
1105    /// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap());
1106    /// ```
1107    #[corresponds(BN_bin2bn)]
1108    pub fn from_slice(n: &[u8]) -> Result<BigNum, ErrorStack> {
1109        unsafe {
1110            ffi::init();
1111            assert!(n.len() <= LenType::MAX as usize);
1112
1113            cvt_p(ffi::BN_bin2bn(
1114                n.as_ptr(),
1115                n.len() as LenType,
1116                ptr::null_mut(),
1117            ))
1118            .map(|p| BigNum::from_ptr(p))
1119        }
1120    }
1121
1122    /// Copies data from a slice overwriting what was in the BigNum.
1123    ///
1124    /// This function can be used to copy data from a slice to a
1125    /// [secure BigNum][`BigNum::new_secure`].
1126    ///
1127    /// # Examples
1128    ///
1129    /// ```
1130    /// # use openssl::bn::BigNum;
1131    /// let mut bignum = BigNum::new().unwrap();
1132    /// bignum.copy_from_slice(&[0x12, 0x00, 0x34]).unwrap();
1133    ///
1134    /// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap());
1135    /// ```
1136    #[corresponds(BN_bin2bn)]
1137    pub fn copy_from_slice(&mut self, n: &[u8]) -> Result<(), ErrorStack> {
1138        unsafe {
1139            assert!(n.len() <= LenType::MAX as usize);
1140
1141            cvt_p(ffi::BN_bin2bn(n.as_ptr(), n.len() as LenType, self.0))?;
1142            Ok(())
1143        }
1144    }
1145}
1146
1147impl fmt::Debug for BigNumRef {
1148    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1149        match self.to_dec_str() {
1150            Ok(s) => f.write_str(&s),
1151            Err(e) => Err(e.into()),
1152        }
1153    }
1154}
1155
1156impl fmt::Debug for BigNum {
1157    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1158        match self.to_dec_str() {
1159            Ok(s) => f.write_str(&s),
1160            Err(e) => Err(e.into()),
1161        }
1162    }
1163}
1164
1165impl fmt::Display for BigNumRef {
1166    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1167        match self.to_dec_str() {
1168            Ok(s) => f.write_str(&s),
1169            Err(e) => Err(e.into()),
1170        }
1171    }
1172}
1173
1174impl fmt::Display for BigNum {
1175    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1176        match self.to_dec_str() {
1177            Ok(s) => f.write_str(&s),
1178            Err(e) => Err(e.into()),
1179        }
1180    }
1181}
1182
1183impl PartialEq<BigNumRef> for BigNumRef {
1184    fn eq(&self, oth: &BigNumRef) -> bool {
1185        self.cmp(oth) == Ordering::Equal
1186    }
1187}
1188
1189impl PartialEq<BigNum> for BigNumRef {
1190    fn eq(&self, oth: &BigNum) -> bool {
1191        self.eq(oth.deref())
1192    }
1193}
1194
1195impl Eq for BigNumRef {}
1196
1197impl PartialEq for BigNum {
1198    fn eq(&self, oth: &BigNum) -> bool {
1199        self.deref().eq(oth)
1200    }
1201}
1202
1203impl PartialEq<BigNumRef> for BigNum {
1204    fn eq(&self, oth: &BigNumRef) -> bool {
1205        self.deref().eq(oth)
1206    }
1207}
1208
1209impl Eq for BigNum {}
1210
1211impl PartialOrd<BigNumRef> for BigNumRef {
1212    fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> {
1213        Some(self.cmp(oth))
1214    }
1215}
1216
1217impl PartialOrd<BigNum> for BigNumRef {
1218    fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> {
1219        Some(self.cmp(oth.deref()))
1220    }
1221}
1222
1223impl Ord for BigNumRef {
1224    fn cmp(&self, oth: &BigNumRef) -> Ordering {
1225        unsafe { ffi::BN_cmp(self.as_ptr(), oth.as_ptr()).cmp(&0) }
1226    }
1227}
1228
1229impl PartialOrd for BigNum {
1230    fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> {
1231        Some(self.cmp(oth))
1232    }
1233}
1234
1235impl PartialOrd<BigNumRef> for BigNum {
1236    fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> {
1237        self.deref().partial_cmp(oth)
1238    }
1239}
1240
1241impl Ord for BigNum {
1242    fn cmp(&self, oth: &BigNum) -> Ordering {
1243        self.deref().cmp(oth.deref())
1244    }
1245}
1246
1247macro_rules! delegate {
1248    ($t:ident, $m:ident) => {
1249        impl<'a, 'b> $t<&'b BigNum> for &'a BigNumRef {
1250            type Output = BigNum;
1251
1252            fn $m(self, oth: &BigNum) -> BigNum {
1253                $t::$m(self, oth.deref())
1254            }
1255        }
1256
1257        impl<'a, 'b> $t<&'b BigNumRef> for &'a BigNum {
1258            type Output = BigNum;
1259
1260            fn $m(self, oth: &BigNumRef) -> BigNum {
1261                $t::$m(self.deref(), oth)
1262            }
1263        }
1264
1265        impl<'a, 'b> $t<&'b BigNum> for &'a BigNum {
1266            type Output = BigNum;
1267
1268            fn $m(self, oth: &BigNum) -> BigNum {
1269                $t::$m(self.deref(), oth.deref())
1270            }
1271        }
1272    };
1273}
1274
1275impl Add<&BigNumRef> for &BigNumRef {
1276    type Output = BigNum;
1277
1278    fn add(self, oth: &BigNumRef) -> BigNum {
1279        let mut r = BigNum::new().unwrap();
1280        r.checked_add(self, oth).unwrap();
1281        r
1282    }
1283}
1284
1285delegate!(Add, add);
1286
1287impl Sub<&BigNumRef> for &BigNumRef {
1288    type Output = BigNum;
1289
1290    fn sub(self, oth: &BigNumRef) -> BigNum {
1291        let mut r = BigNum::new().unwrap();
1292        r.checked_sub(self, oth).unwrap();
1293        r
1294    }
1295}
1296
1297delegate!(Sub, sub);
1298
1299impl Mul<&BigNumRef> for &BigNumRef {
1300    type Output = BigNum;
1301
1302    fn mul(self, oth: &BigNumRef) -> BigNum {
1303        let mut ctx = BigNumContext::new().unwrap();
1304        let mut r = BigNum::new().unwrap();
1305        r.checked_mul(self, oth, &mut ctx).unwrap();
1306        r
1307    }
1308}
1309
1310delegate!(Mul, mul);
1311
1312impl<'b> Div<&'b BigNumRef> for &BigNumRef {
1313    type Output = BigNum;
1314
1315    fn div(self, oth: &'b BigNumRef) -> BigNum {
1316        let mut ctx = BigNumContext::new().unwrap();
1317        let mut r = BigNum::new().unwrap();
1318        r.checked_div(self, oth, &mut ctx).unwrap();
1319        r
1320    }
1321}
1322
1323delegate!(Div, div);
1324
1325impl<'b> Rem<&'b BigNumRef> for &BigNumRef {
1326    type Output = BigNum;
1327
1328    fn rem(self, oth: &'b BigNumRef) -> BigNum {
1329        let mut ctx = BigNumContext::new().unwrap();
1330        let mut r = BigNum::new().unwrap();
1331        r.checked_rem(self, oth, &mut ctx).unwrap();
1332        r
1333    }
1334}
1335
1336delegate!(Rem, rem);
1337
1338impl Shl<i32> for &BigNumRef {
1339    type Output = BigNum;
1340
1341    fn shl(self, n: i32) -> BigNum {
1342        let mut r = BigNum::new().unwrap();
1343        r.lshift(self, n).unwrap();
1344        r
1345    }
1346}
1347
1348impl Shl<i32> for &BigNum {
1349    type Output = BigNum;
1350
1351    fn shl(self, n: i32) -> BigNum {
1352        self.deref().shl(n)
1353    }
1354}
1355
1356impl Shr<i32> for &BigNumRef {
1357    type Output = BigNum;
1358
1359    fn shr(self, n: i32) -> BigNum {
1360        let mut r = BigNum::new().unwrap();
1361        r.rshift(self, n).unwrap();
1362        r
1363    }
1364}
1365
1366impl Shr<i32> for &BigNum {
1367    type Output = BigNum;
1368
1369    fn shr(self, n: i32) -> BigNum {
1370        self.deref().shr(n)
1371    }
1372}
1373
1374impl Neg for &BigNumRef {
1375    type Output = BigNum;
1376
1377    fn neg(self) -> BigNum {
1378        self.to_owned().unwrap().neg()
1379    }
1380}
1381
1382impl Neg for &BigNum {
1383    type Output = BigNum;
1384
1385    fn neg(self) -> BigNum {
1386        self.deref().neg()
1387    }
1388}
1389
1390impl Neg for BigNum {
1391    type Output = BigNum;
1392
1393    fn neg(mut self) -> BigNum {
1394        let negative = self.is_negative();
1395        self.set_negative(!negative);
1396        self
1397    }
1398}
1399
1400#[cfg(test)]
1401mod tests {
1402    use crate::bn::{BigNum, BigNumContext};
1403
1404    #[test]
1405    fn test_to_from_slice() {
1406        let v0 = BigNum::from_u32(10_203_004).unwrap();
1407        let vec = v0.to_vec();
1408        let v1 = BigNum::from_slice(&vec).unwrap();
1409
1410        assert_eq!(v0, v1);
1411    }
1412
1413    #[test]
1414    fn test_negation() {
1415        let a = BigNum::from_u32(909_829_283).unwrap();
1416
1417        assert!(!a.is_negative());
1418        assert!((-a).is_negative());
1419    }
1420
1421    #[test]
1422    fn test_shift() {
1423        let a = BigNum::from_u32(909_829_283).unwrap();
1424
1425        assert_eq!(a, &(&a << 1) >> 1);
1426    }
1427
1428    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
1429    #[test]
1430    fn test_rand_range() {
1431        let range = BigNum::from_u32(909_829_283).unwrap();
1432        let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap();
1433        range.rand_range(&mut result).unwrap();
1434        assert!(result >= BigNum::from_u32(0).unwrap() && result < range);
1435    }
1436
1437    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
1438    #[test]
1439    fn test_pseudo_rand_range() {
1440        let range = BigNum::from_u32(909_829_283).unwrap();
1441        let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap();
1442        range.pseudo_rand_range(&mut result).unwrap();
1443        assert!(result >= BigNum::from_u32(0).unwrap() && result < range);
1444    }
1445
1446    #[cfg(not(osslconf = "OPENSSL_NO_DEPRECATED_3_0"))]
1447    #[test]
1448    fn test_prime_numbers() {
1449        let a = BigNum::from_u32(19_029_017).unwrap();
1450        let mut p = BigNum::new().unwrap();
1451        p.generate_prime(128, true, None, Some(&a)).unwrap();
1452
1453        let mut ctx = BigNumContext::new().unwrap();
1454        assert!(p.is_prime(100, &mut ctx).unwrap());
1455        assert!(p.is_prime_fasttest(100, &mut ctx, true).unwrap());
1456    }
1457
1458    #[cfg(ossl110)]
1459    #[test]
1460    fn test_secure_bn_ctx() {
1461        let mut cxt = BigNumContext::new_secure().unwrap();
1462        let a = BigNum::from_u32(8).unwrap();
1463        let b = BigNum::from_u32(3).unwrap();
1464
1465        let mut remainder = BigNum::new().unwrap();
1466        remainder.nnmod(&a, &b, &mut cxt).unwrap();
1467
1468        assert!(remainder.eq(&BigNum::from_u32(2).unwrap()));
1469    }
1470
1471    #[cfg(ossl110)]
1472    #[test]
1473    fn test_secure_bn() {
1474        let a = BigNum::new().unwrap();
1475        assert!(!a.is_secure());
1476
1477        let b = BigNum::new_secure().unwrap();
1478        assert!(b.is_secure())
1479    }
1480
1481    #[cfg(ossl110)]
1482    #[test]
1483    fn test_const_time_bn() {
1484        let a = BigNum::new().unwrap();
1485        assert!(!a.is_const_time());
1486
1487        let mut b = BigNum::new().unwrap();
1488        b.set_const_time();
1489        assert!(b.is_const_time())
1490    }
1491
1492    #[test]
1493    fn test_mod_sqrt() {
1494        let mut ctx = BigNumContext::new().unwrap();
1495
1496        let s = BigNum::from_hex_str("2").unwrap();
1497        let p = BigNum::from_hex_str("7DEB1").unwrap();
1498        let mut sqrt = BigNum::new().unwrap();
1499        let mut out = BigNum::new().unwrap();
1500
1501        // Square the root because OpenSSL randomly returns one of 2E42C or 4FA85
1502        sqrt.mod_sqrt(&s, &p, &mut ctx).unwrap();
1503        out.mod_sqr(&sqrt, &p, &mut ctx).unwrap();
1504        assert!(out == s);
1505
1506        let s = BigNum::from_hex_str("3").unwrap();
1507        let p = BigNum::from_hex_str("5").unwrap();
1508        assert!(out.mod_sqrt(&s, &p, &mut ctx).is_err());
1509    }
1510
1511    #[test]
1512    #[cfg(any(ossl110, boringssl, libressl350))]
1513    fn test_odd_even() {
1514        let a = BigNum::from_u32(17).unwrap();
1515        let b = BigNum::from_u32(18).unwrap();
1516
1517        assert!(a.is_odd());
1518        assert!(!b.is_odd());
1519
1520        assert!(!a.is_even());
1521        assert!(b.is_even());
1522    }
1523}